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Multidelayed random walks: Theory and application to the neolithic transition in Europe
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We present a model in which particlésr individuals of a biological populatigrdisperse with a rest time
between consecutive motiorier migrationg which may take several possible values from a discrete set.
Particles(or individualg may also reactor reproducg We derive a new equation for the effective rest tifhe
of the random walk. Application to the neolithic transition in Europe makes it possible to derive more realistic
theoretical values for its wavefront speed than those following from the single-delayed framework presented
previously[J. Fort and V. Méndez, Phys. Rev. Le&2, 867(1999]. The new results are consistent with the
archaeological observations of this important historical process.
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I. INTRODUCTION riculturalists in order to compute the predicted front speed of
the neolithic transition in Europé&Sec. Ill), thus improving

; - ; ; the framework of our previousingle-delayednodel on the
sive(as opposed teeproductive delay in the spatial dynam- . - ? . X
ics of the population density. The simplest description is thaf‘GOIIthIC transition presented in Refl]. Section IV is de-
in which all individuals have the same rest time between any©ted to concluding remarks.
two consecutive jumps. In recent years, such single-delayed

The rest time of reproducing individuals causegisper-

random-walk models have been successfully compared to Il. THEORY
observations of biophysical systems, including the speed of _ ) o
farming communities which gave rise to the neolitfig2], In this section, we begin with the approach by Othmer,

the speed of virus infectior|8], etc. (for a review, see Ref. Dunbar, and Alf5] to a system of particles with a distribu-
[4]). However, a single-delayed random walk is a highly ide-tion of delay times, but allowing also for the reproduction of
alized picture of the true microscopic motion of particles ~ particles or individualg4], which leads to a variable total
individuals, in biophysical applicatiopsThis is why several number of particle$7]. If ds R(x,y,t) stands for the number
authors have gone beyond by considering several possiblef particles per unit area thagach an areads centered at
resting times for the particlgsr individualg in motion. Oth-  (x,y) at timet, we have[5,4]

mer, Dunbar, and AI{5] considered a general framework. ; - "

Later_on, it was applled_ to compute the_speed of reaction- P(x,y,1) :f dTJ dAxJ dAYP(x + Ax,y + Ay,t - T)
diffusion fronts but, again, only for the single-delayed case 0 — -

[4]. Vlad and Rosg6] developed another model, and were
the first to apply such an approach to a specific multidelayed X @(T)$(Ax,Ay) + podx = 0) 8y = 0)&(t = 0)
example. They considered a gamma distribution of waiting +Fp(x,y,t), (1)

times, which is realistic in many populations. But, as noted ) ) )
by Vlad and Ros$6] in their conclusions, data for preindus- Where, following the same notation as in R}, #(Ax,Ay)

trial agriculturalists(see Sec. Il below are not detailed IS the probability of making a jump of coordinate lengths
enough to believe that a gamma distribution is appropriate tgA% —Ay. Note that, in contrast to Refl], we allow for

the neolithic transitiofand less still to fit a gamma distribu- Several possible values of the rest tifidy using the prob-
tion and estimate its parameter values with any confidence@bility ¢(T) that a particle rests for a time betwe&nand
Therefore, in this paper we would like to propose an alternal +dT before performing the next jump, divided It [in

tive framework. We consider the case of several possiblgRef. [1] we assumed a Dirac delta, i.e(T)=8(T-Ty), i.e.,
discrete resting times, each of them with an associated proflhe same rest time for all jumpsAe have used the product
ability, and determine the speed of wavefronts. We try toof probabilitiese(T) and ¢(Ax,Ay) in Eq. (1), and thus as-
present a very clear, self-contained model from first prin-sumed that the rest times and lengths of jumps are uncorre-
ciples (Sec. 1), so that readers can understand the preserlated(this is indeed justified, because such a correlation has
paper without the need to resort to any additional source imot been observed in the phenomenon that we will analyze in
the literature. Our assumption of several discrete restingec. ). The termpyd(x=0)8(y=0)&(t=0) corresponds to
times (each with a specific probabilityis very useful be- assuming that initially(t=0) there are no particles at any
cause it makes it possible to apply data for preindustrial agpoint other than the origiri5], where the particle number
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density is po. The so-called source or growth function 5 ~ _ c

Fp(x,yy,t) isp(l)Jsed to take care of the effec? of the birth and Plkoky 9L = @(9)¢kaky) 1= po+ Flkaky,s), (8)

death of individuals(or chemical reactions between par- ~ A

ticles), as usua[4]. p(ky.Ky,9) = W(S)P(ky,K,,9), 9)
The densityp(x,y,t) of particles(or individual9 per unit where we have used the Laplace transform of ER),

area centered a=(x,y) at timet is clearly given by the namely[see Ref[9], formulas(32.13,25]
particles that have arrived &x,y) at some earlier time and

i i 1-2
still not left, namely[5] B(s) = <P(S)_ (10)

t

p(lelt) = f dt, P(X!y!t,)\P(t - t,)l (2) Therefore

O 1
whereW(t-t') is the probability that any particle rests for at P _ QD( s)
least a time intervat—t’ before performing the next jump, Pllooky 9L = G(s) hlko k)1 = Ty LRk kyS)]-
obviously[5] (11)

W(t-t') :f dT o(T) =1 _fH dT o(T). 3 Antitransforming .this equation, one .can'in principle find the
-t/ 0 differential equation forp(x,y,t), which is the observable
. . field in real space and tim@0]. This framework was applied
In order to solve Eq.(1), we introduce the Fourier- ;. Ref. [4] topthe case chTf[a !smgle delay, nameyT) p5p(-|-
I[_Sag]lace transforms of the corresponding space-time fields 1 ) \yhich is, of course, nothing but a different route to the
same result as that in Refl]). In contrast, here we are
- * * * interested in studying a system in which partic{es indi-
Pk ky,S) = J dx f dy f dte™* S P(x,y,t), (4 vidualy may wait for several possible rest times
— w 0 (T1,T5,Ts,...) before performing the next jump. Therefore,
we will consider the distribution

p(keky,s) = J dx f dy f dte™Slp(ey,0, (5) N
- - 0 o(M=2paT-T), (12

i=1
zjo(s)&S(kx,ky) = f dT €5Te(T) f dAx f dAy where p; is the probability that the rest time i§; (thus,
0 — — EiN:l pi=1). As explained in the Introductiotand explicitly

shown in Sec. lll, we consider a finite set of possible rest

times (i=1,2,3,...N) because in the application we are

" " " interested in, the available observations were recorded in this

F - ik X-st way, and fitting them to a continuous functigsuch as a

Frlkaks) J_m dxf_w dyfo dre™ ety ). gamma distribution would introduce a very important

7) source of error in the results, which would make them doubt-
ful indeed. This difficulty of not having sufficiently detailed

Then, the Fourier-Laplace transforms of E¢l§.and(2) are ~ demographic dispersal data available has been already

[see, e.g., Ref8], formulas(F.5b,k and(F.11g,n] pointed out by previous authofé].

X e‘”‘a‘Aﬂxcﬁ(Ax,Ay), (6)

Making use of Eq(12) into Eq. (11),

1- E peT
ﬁ(kx, ky,S) [ (2 P e_ST) ¢(kxa ky)] %[Po + 'EP(er ky,S)]. (13)

In order to be able to antitransform this equation in the simplest possible way, we make the following steps.
First, we rewrite the previous equation in a form such that the time and space probability distributions do not appear as a
product but as separate terms,

“ 1 ~ 1 1 “
p(kx-ky’s) -~ ¢(kx1ky) = g ~ 1|[po+ FP(kkayaS)]- (14

> pesh > pesh
i=1 i=1
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Second, as in Ref[1l], we assume that the space kernel is isotropic,

PHYSICAL REVIEW E 70, 031913(2004)

it A, Ay) = p(AX, Ay) = $(Ax, ~Ay)

=¢(Ay,Ax). Then, from Eq(6) and the normalization of probabilify”, dAxS”, dAy ¢(Ax,Ay)=1], we find that

. oo oo A
¢(kx,ky):J dAxf dAy[ -k A1 X

ki%yz + 0(3)} P(Ax,Ay)=1- %(ki +k5) +0(3),

(15

whereO(3) stands for terms of third and higher powersof and Ay.

Third, we assume that the characteristic time and space scales of the macroscopic obséevgtjangasurement of the
front speedlare sufficiently large compared to the microscopic characteristic time and space(swdesrest times; <t and
jump displacementdx<<x, Ay<<y), so that we may approximate both sides of Egl) by their Taylor series up to second
order in the variables;, Ax, andAy [an equivalent assumption was made in R&f, below Eq.(6)]. Then, Eq(14) becomes

p(Ky. Ky, S) {(T}s(l +

£s> + 5<T)(k§ + kf,):| = <T>(1 + -IE—S) [po+ Fa(ky ky,9)],

(16)

where we have introduced the mean rest time between suexperimental data on human populatigas,14.

cessive jumps a§N=3N, p;T;, the diffusion coefficient as

~_ (A%
D= 17
AT’ 7
which for a single rest timép;=1, p,=p3=---=0 [11]) re-
duces to the usual formula=(A?)/4T, [1,12], and we have
defined

N
N El (P
i=
T= A~y =22 T~y (18)
i=1
> pT
i=1
Equation(16) can be written
Ts . - — D24 25 4 F
?(Sp = po) +Sp = po == D(K; + Kj)p + Fp(Ky,ky,9)
T .
+ ESFP(kX’ Ky,S). (19
Antitransforming this equation, we obtain
TPp dp_=(Pp & T aFp(x,y,t
Zp,p D( P, ’;)+Fp(x,y,t)+—M,
2022 at ax? ﬂy 2 at
(20)

where we have used formulék.5)) in Ref. [8] and(32.7,8
in Ref. [9], and applied thap(x,y,t=0)=py8(x=0)8(y=0).
We have also used th&k(x,y,t=0)=0, which is justified if,

In our opinion, Eq(20) is a very nice result. It shows that
if there are several possible delays, the system still follows a
hyperbolic reaction-diffusion equatioisee Eq.(7) in Ref.
[1]], but the role of the single rest time in the single-delay
model in Ref[1] is now played byT, which is given by the
new result(18). In this senseT may be called an “effective”
rest time. It may be written as

=(M1-e), (22)

where

_(AT?)

(T
m?

M2 23

is the relative dispersiofor fluctuatior) of the waiting time.

Physically, we can understand the fact thiat (T), i.e., the
presence of the last term in E(R2), as follows. Consider
two waiting-time distributions with the same me@n) but
different dispersiongFig. 1). If the distribution shape is wide
[Fig. (@], some individuals will have low values of the
dispersive delayl, as compared to those of narrower distri-
bution [Fig. 1(b)]. Intuitively, it is obvious that a population
front will travel faster if some individuals move sooner, i.e.,
with a lower delayT [as in Fig. 1a) as compared to Fig.

1(b)]. This is the physical reason why the effective de?ay
(which tends to slow the front dowmwill be lower for Fig.

as usua[4], we consider that the population is initially satu- 1(a), so thatT decreases with increasing values of the dis-
rated at the origin and reproduces according to the logistigersione, as predicted by Eq22).

growth function, namely,

szap<1 —£>,
Po

wherea is called the initial growth rate ang}, the saturation
density of the population. Equatiai2l) agrees with many

(21)

It is easily seen(e.g., by considering the simple case of
two possible delayd; andT,) that it is possible that >1

and, thereforeT <O0. In such an instance, E¢20) breaks
down, as we will now show. In the derivation above of Eq.
(16), we have Taylor-expanded the functipmhich appears
in Eq. (14)]
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Therefore, in the present paper we will not analyze the case

T<0 in more detail. However, let us mention that we do not
- 1 expect that analytical solutions are possible when additional
terms in the Taylor series are kept, as already happens for the
simpler, special case of a single delay even under some dis-
persal kernel assumptions that simplify the calculatifjs
Before leaving this section, we would like to stress the
- . differences from previous work.
In Ref. [4], a single rest time between two successive
[ jumps [o(T)=48(T—-T;) [11]] and a Gaussian distribution of
<T> jump lengths in one dimensidip(Ax) = exd —Ax?/ a?]] were
(@) __delay time T assumed. In contrast, in the derivation abogig there are
several possible, discrete values of the rest tjigg. (12)];
(i) the distribution of jump lengths is arbitrary; ardi)
r 1 space has two dimensioas required for the application in
the next section
In Refs.[6,16], the distribution of rest times applied is not
given by Eq.(12) but by a gamma distributioas explained
in the Introduction, a gamma distribution is very useful for
- . many cases, but not in the application that we analyze in the
next section Some other examples have also been consid-
ered in Ref.[17] (including non-Markovian random walks
<T> leading to anomalous diffusignBut instead of the very in-
(b) delay time T teresting, abstract, and general models in REsl7], for
our purposes here it will be much simpler and clearer to
FIG. 1~Th|S flgure is useful in Understanding Why the effective make use Of the dlrect approach we have presented |t makes
delay timeT of the random walk, introduced in this work, depends the present paper self-contained and fits perfectly with the
not only on the meagT) but also on the dispersianof the delay-  kind of data available for the problem we want to solve in
time distribution. Both distributions depicted have the same meamhe next section.
delay(T), but that in(a) has a greater dispersien implying that a

few particles(or individualg jump (or migrat§ sooner(low values
of T), which must lead to a faster front, i.e., to a lower effective !ll. APPLICATION TO THE NEOLITHIC TRANSITION

IN EUROPE

probability

probability

deIay'NI'. This explains thaT decreases with increasing values of the

dispersione, as predicted by E¢22). Referencd1] dealt with the range expansion of agricul-
turalists across Eurasia, which took place 10 000 to 4000
years Before Present. In that model, a single rest fime

_ _ 1T 3
f== =1+(T)s+ (T’ +O(T)). =25 yr was assumed and the evolution equation was
> pesT 2 2
. TPp 4 Pp TaFp(X,y,t
= T7p, 76 _ (_g . —’Z) FFo(iyt) + L2FROYD
20t ot axs ay 2 Jt
We note thatgf/9s>0, and that for T<O0 we have (24)

#119s?<0. Thus, if T<O0 the second-olrdei approximation it Fp given by Eq.(21). The wavefront solutions to this
used in Eqg. (16), namely f:1+<T>S+ §<T>T52, becomes equation have Speqd_s,lq
negative for some values &f so that in this approximation

we have that the functio@(s) =2\, p,esTi<0 for some val- _ 2yaD

: L . . Usingle delay™ . (25)
ues ofs. But then Eq(6) implies that the waiting-time prob- T
ability distribution functione(T) <0 for some values of. < +a§

Negative probabilities have no physical sense, thus we con-

clude that forT <0 the second-order expansion that leads tom Ref. [1], we also used the mean observed valaes

— 71 2\ — — /A2 i

Eqg. (20) cannot be applied. Of course, if in some specificég'?g’; y;n:r_':ﬁg'isd';b:(aﬁ’ezs well ale—éAkr;//ﬂr' '20

; ; T ; : ) | IS way I single delay™ - yr,
a.lppllcatlo~n one cpmputes the value Dlsing Eq..(18) and that there was good agreement with the observed speed from
finds thatT <0, this does not mean that population fronts dothe archaeological record.0+0.2 km/yr, see Fig. 1 and the
not exist. One should then keep terms of order higher thagain text in Ref[1], as well ag20]).
the second in the Taylor expansions, so that(&Q) will be In [1], summarized in the previous paragraph, we simply
replaced by a more complicated equation with terms, e.9., O4ssumed that the time between succeséiee, parents’ and
the forma°p/ ot°. In the application we are interested in solv- theijr childrens) migrations is the same for all individuals,
ing (Sec. lll), this is not the case, i.e., we will find that=0.  i.e., we made the approximation of a single rest time with a
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FIG. 2. Predictions for the speed of the wave
of advance of farmers in the neolithic transition
according to the model with a single del@y]
(dashed curvgsand to the more realistic model
with several discrete delays, as developed in the
present papeg(full curves. The dashed curves are
therefore the same as those in Réf, Fig. 3. It
is seen that for many of the possible values of the
reproductive and dispersive parameters of the
population(hatched rectangjethe predictions of
the new, more accurate model are still consistent

with the front speed from the archaeological data
(1.0£0.2 km/yr, from Fig. 1 in Ref{1]).
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value equal to the so-called generation time, namely To what extent does our new result for the European
=25 yr [15]. But, clearly, a single value for the rest time neolithic depend on the uncertainties in the values of the
cannot be a realistic description, because different childreparameters? In Fig. 2 we see that, for many values of
will leave their parents at different ages. Therefore, it is quiteand (A%)/(T) in the range allowed by independent observa-
important to see how the results change when taking inteions [1] (hatched rectangjethe predictions of the multide-
account a realistic rest-time distribution. In order to do solayed model are consistent with the observed speed
we resort to Ref[21], which is the same source from which (1.0£0.2 km/yr[1]).

the value of(A?) in Refs.[1,22 was estimated23]. From
Ref. [21], we find that the observed rest-time distribution is
T,=27 yr, p;=0.46; T,=35.5 yr, p,=0.51; T3=45.5 yr, p3
=31.1yr" Using, fo the moment, the sam mean observe 1 11 baper, we have presented a theoretical framework
values as above, namely=0.032 yr* and (A2)=1544 kn? of multidelayed random walks with reaction. It has been ap-

) ~ plied to the neolithic transition in Europe. The effect of hav-
[1], Eq. (17) yields D=386 knt/gen=12.06 kriVyr and the  ing several delays is, at the end, mathematically very simple:
wavefront speed of Eq20) is [18,19

the single-delayed front speed is given by E2Zp), whereas
the multidelayed one is given by E(6), which has the
same mathematical form but witti) the single rest time

IV. CONCLUDING REMARKS

2\ab

Umultidelay= — = = 0.83 kml/yr, (26)  between successive jumgsreplaced by an effective rest
1 +aI time T, which must be computed by means of our new Eq.
2 (18), first derived in the present paper, afid the diffusion

coefficientD given by Eq.(17). In the specific application of
which implies that the correction relative to the single-delaythe neolithic transition, the effect of a single delay was ana-
result in Ref.[1] is of 17%, so that the effect of several lyzed in Ref.[1]. Here, we have generalized it to the realistic
delays turns out to be one of minor importarias far as the case of several delays. The predicted speed is still consistent
order of magnitude is considengdbut should not be ne- with the observed range of 1.0£0.2 km/§#ig. 2), but it is
glecteda priori. (Note that our detailed analysis of the de- somewhat lower, essentially because a reevaluation of the

mographic data is also relevant: the valle25 yr used in  dispersal demographic data shows that the effective dElay

Ref. [1] is the so-called generation time and was obtaineds higher than the valud=25 yr used for the single-delay
from Ref.[22]. But we now realize that this is essentially the model in Ref.[1].

age difference between parents and tlédestchild, not the
mean age difference averaged owl children [24].) An
important point is that the new, more accurate result of
0.83 km/yr is still within the observed range for the wave-
front speed1.0£0.2 km/yr, from Fig. 1 in Ref.1]; see also We thank L. L. Cavalli-Sforza for suggesting this research
[20]). Of course, our model is also interesting in itself, be-work to us, for advice, and for discussions. Computing
cause it is applicable to many other human transitions andquipment used in this work was partially funded by the
biological invasions, where the effect of having several de-Generalitat de Catalunya under Grant No. Grup Consolidat
lays may be a relevant point, as well as to nonbiologicalSGR-2001-00186J.F) and by the MICYT under Grant No.
systems with random walks with several possible delays. REN-2003-0018%JF).
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