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We present a model in which particles(or individuals of a biological population) disperse with a rest time
between consecutive motions(or migrations) which may take several possible values from a discrete set.

Particles(or individuals) may also react(or reproduce). We derive a new equation for the effective rest timeT̃
of the random walk. Application to the neolithic transition in Europe makes it possible to derive more realistic
theoretical values for its wavefront speed than those following from the single-delayed framework presented
previously[J. Fort and V. Méndez, Phys. Rev. Lett.82, 867 (1999)]. The new results are consistent with the
archaeological observations of this important historical process.
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I. INTRODUCTION

The rest time of reproducing individuals causes adisper-
sive(as opposed toreproductive) delay in the spatial dynam-
ics of the population density. The simplest description is that
in which all individuals have the same rest time between any
two consecutive jumps. In recent years, such single-delayed
random-walk models have been successfully compared to
observations of biophysical systems, including the speed of
farming communities which gave rise to the neolithic[1,2],
the speed of virus infections[3], etc. (for a review, see Ref.
[4]). However, a single-delayed random walk is a highly ide-
alized picture of the true microscopic motion of particles(or
individuals, in biophysical applications). This is why several
authors have gone beyond by considering several possible
resting times for the particles(or individuals) in motion. Oth-
mer, Dunbar, and Alt[5] considered a general framework.
Later on, it was applied to compute the speed of reaction-
diffusion fronts but, again, only for the single-delayed case
[4]. Vlad and Ross[6] developed another model, and were
the first to apply such an approach to a specific multidelayed
example. They considered a gamma distribution of waiting
times, which is realistic in many populations. But, as noted
by Vlad and Ross[6] in their conclusions, data for preindus-
trial agriculturalists(see Sec. III below) are not detailed
enough to believe that a gamma distribution is appropriate to
the neolithic transition(and less still to fit a gamma distribu-
tion and estimate its parameter values with any confidence).
Therefore, in this paper we would like to propose an alterna-
tive framework. We consider the case of several possible,
discrete resting times, each of them with an associated prob-
ability, and determine the speed of wavefronts. We try to
present a very clear, self-contained model from first prin-
ciples (Sec. II), so that readers can understand the present
paper without the need to resort to any additional source in
the literature. Our assumption of several discrete resting
times (each with a specific probability) is very useful be-
cause it makes it possible to apply data for preindustrial ag-

riculturalists in order to compute the predicted front speed of
the neolithic transition in Europe(Sec. III), thus improving
the framework of our previous,single-delayedmodel on the
neolithic transition presented in Ref.[1]. Section IV is de-
voted to concluding remarks.

II. THEORY

In this section, we begin with the approach by Othmer,
Dunbar, and Alt[5] to a system of particles with a distribu-
tion of delay times, but allowing also for the reproduction of
particles or individuals[4], which leads to a variable total
number of particles[7]. If ds Psx,y,td stands for the number
of particles per unit area thatreach an areads centered at
sx,yd at time t, we have[5,4]

Psx,y,td =E
0

t

dTE
−`

`

dDxE
−`

`

dDyPsx + Dx,y + Dy,t − Td

3wsTdfsDx,Dyd + r0dsx = 0ddsy = 0ddst = 0d

+ FPsx,y,td, s1d

where, following the same notation as in Ref.[1], fsDx,Dyd
is the probability of making a jump of coordinate lengths
−Dx, −Dy. Note that, in contrast to Ref.[1], we allow for
several possible values of the rest timeT by using the prob-
ability wsTd that a particle rests for a time betweenT and
T+dT before performing the next jump, divided bydT [in
Ref. [1] we assumed a Dirac delta, i.e.,wsTd=dsT−T1d, i.e.,
the same rest time for all jumps]. We have used the product
of probabilitieswsTd andfsDx,Dyd in Eq. (1), and thus as-
sumed that the rest times and lengths of jumps are uncorre-
lated (this is indeed justified, because such a correlation has
not been observed in the phenomenon that we will analyze in
Sec. III). The termr0dsx=0ddsy=0ddst=0d corresponds to
assuming that initiallyst=0d there are no particles at any
point other than the origin[5], where the particle number
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density is r0. The so-called source or growth function
FPsx,y,td is used to take care of the effect of the birth and
death of individuals(or chemical reactions between par-
ticles), as usual[4].

The densityrsx,y,td of particles(or individuals) per unit
area centered atxW ;sx,yd at time t is clearly given by the
particles that have arrived atsx,yd at some earlier time and
still not left, namely[5]

rsx,y,td =E
0

t

dt8Psx,y,t8dCst − t8d, s2d

whereCst− t8d is the probability that any particle rests for at
least a time intervalt− t8 before performing the next jump,
obviously [5]

Cst − t8d =E
t−t8

`

dT wsTd = 1 −E
0

t−t8
dT wsTd. s3d

In order to solve Eq.(1), we introduce the Fourier-
Laplace transforms of the corresponding space-time fields
[8,9],

P̂skx,ky,sd =E
−`

`

dxE
−`

`

dyE
0

`

dt e−ikW·xW−stPsx,y,td, s4d

r̂skx,ky,sd =E
−`

`

dxE
−`

`

dyE
0

`

dt e−ikW·xW−strsx,y,td, s5d

ŵssdf̂skx,kyd =E
0

`

dT e−sTwsTdE
−`

`

dDxE
−`

`

dDy

3 e−ikW·DxW fsDx,Dyd, s6d

F̂Pskx,ky,sd =E
−`

`

dxE
−`

`

dyE
0

`

dt e−ikW·xW−stFPsx,y,td.

s7d

Then, the Fourier-Laplace transforms of Eqs.(1) and(2) are
[see, e.g., Ref.[8], formulas(F.5b,k) and (F.11g,n)]

P̂skx,ky,sdf1 − ŵssdf̂skx,kydg = r0 + F̂Pskx,ky,sd, s8d

r̂skx,ky,sd = ĈssdP̂skx,ky,sd, s9d

where we have used the Laplace transform of Eq.(3),
namely[see Ref.[9], formulas(32.13,25)]

Ĉssd =
1 − ŵssd

s
. s10d

Therefore,

r̂skx,ky,sdf1 − ŵssdf̂skx,kydg =
r0 − ŵssd

s
f1 + F̂Pskx,ky,sdg.

s11d

Antitransforming this equation, one can in principle find the
differential equation forrsx,y,td, which is the observable
field in real space and time[10]. This framework was applied
in Ref. [4] to the case of a single delay, namelywsTd=dsT
−T1d (which is, of course, nothing but a different route to the
same result as that in Ref.[1]). In contrast, here we are
interested in studying a system in which particles(or indi-
viduals) may wait for several possible rest times
sT1,T2,T3, . . .d before performing the next jump. Therefore,
we will consider the distribution

wsTd = o
i=1

N

pidsT − Tid, s12d

where pi is the probability that the rest time isTi (thus,
oi=1

N pi =1). As explained in the Introduction(and explicitly
shown in Sec. III), we consider a finite set of possible rest
times si =1,2,3, . . . ,Nd because in the application we are
interested in, the available observations were recorded in this
way, and fitting them to a continuous function(such as a
gamma distribution) would introduce a very important
source of error in the results, which would make them doubt-
ful indeed. This difficulty of not having sufficiently detailed
demographic dispersal data available has been already
pointed out by previous authors[6].

Making use of Eq.(12) into Eq. (11),

r̂skx,ky,sdF1 −So
i=1

N

pie
−sTiDf̂skx,kydG =

1 −o
i=1

N

pie
−sTi

s
fr0 + F̂Pskx,ky,sdg. s13d

In order to be able to antitransform this equation in the simplest possible way, we make the following steps.
First, we rewrite the previous equation in a form such that the time and space probability distributions do not appear as a

product but as separate terms,

r̂skx,ky,sd3 1

o
i=1

N

pie
−sTi

− f̂skx,kyd4 =
1

s3 1

o
i=1

N

pie
−sTi

− 14fr0 + F̂Pskx,ky,sdg. s14d
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Second, as in Ref.[1], we assume that the space kernel is isotropic, i.e.,fs−Dx,Dyd=fsDx,Dyd=fsDx,−Dyd
=fsDy,Dxd. Then, from Eq.(6) and the normalization of probabilityfe−`

` dDxe−`
` dDy fsDx,Dyd=1g, we find that

f̂skx,kyd =E
−`

`

dDxE
−`

`

dDyF1 − ikW · DW − kx
2Dx2

2
− ky

2Dy2

2
+ Os3dGfsDx,Dyd = 1 −

kD2l
4

skx
2 + ky

2d + Os3d, s15d

whereOs3d stands for terms of third and higher powers ofDx andDy.
Third, we assume that the characteristic time and space scales of the macroscopic observations(e.g., measurement of the

front speed) are sufficiently large compared to the microscopic characteristic time and space scales(mean rest timesTi ! t and
jump displacementsDx!x, Dy!y), so that we may approximate both sides of Eq.(14) by their Taylor series up to second
order in the variablesTi, Dx, andDy [an equivalent assumption was made in Ref.[1], below Eq.(6)]. Then, Eq.(14) becomes

r̂skx,ky,sdFkTlsS1 +
T̃

2
sD + D̃kTlskx

2 + ky
2dG = kTlS1 +

T̃

2
sDfr0 + F̂Pskx,ky,sdg, s16d

where we have introduced the mean rest time between suc-
cessive jumps askTl=oi=1

N piTi, the diffusion coefficient as

D̃ =
kD2l
4kTl

, s17d

which for a single rest time(p1=1, p2=p3=¯ =0 [11]) re-
duces to the usual formulaD=kD2l /4T1 [1,12], and we have
defined

T̃ ; 2kTl −
kT2l
kTl

= 2o
i=1

N

piTi −

o
i=1

N

spiTi
2d

o
i=1

N

piTi

. s18d

Equation(16) can be written

T̃s

2
ssr̂ − r0d + sr̂ − r0 = − D̃skx

2 + ky
2dr̂ + F̂Pskx,ky,sd

+
T̃

2
sF̂Pskx,ky,sd. s19d

Antitransforming this equation, we obtain

T̃

2

]2r

] t2
+

] r

] t
= D̃S ]2r

] x2 +
]2r

] y2D + FPsx,y,td +
T̃

2

] FPsx,y,td
] t

,

s20d

where we have used formulas(F.5j) in Ref. [8] and (32.7,8)
in Ref. [9], and applied thatrsx,y,t=0d=r0dsx=0ddsy=0d.
We have also used thatFPsx,y,t=0d=0, which is justified if,
as usual[4], we consider that the population is initially satu-
rated at the origin and reproduces according to the logistic
growth function, namely,

FP = arS1 −
r

r0
D , s21d

wherea is called the initial growth rate andr0 the saturation
density of the population. Equation(21) agrees with many

experimental data on human populations[13,14].
In our opinion, Eq.(20) is a very nice result. It shows that

if there are several possible delays, the system still follows a
hyperbolic reaction-diffusion equation[see Eq.(7) in Ref.
[1]], but the role of the single rest time in the single-delay

model in Ref.[1] is now played byT̃, which is given by the

new result(18). In this sense,T̃ may be called an “effective”
rest time. It may be written as

T̃ = kTls1 − «d, s22d

where

« =
ksDTd2l

kTl2 =
ksT − kTld2l

kTl2 s23d

is the relative dispersion(or fluctuation) of the waiting time.

Physically, we can understand the fact thatT̃Þ kTl, i.e., the
presence of the last term in Eq.(22), as follows. Consider
two waiting-time distributions with the same meankTl but
different dispersions(Fig. 1). If the distribution shape is wide
[Fig. 1(a)], some individuals will have low values of the
dispersive delayT, as compared to those of narrower distri-
bution [Fig. 1(b)]. Intuitively, it is obvious that a population
front will travel faster if some individuals move sooner, i.e.,
with a lower delayT [as in Fig. 1(a) as compared to Fig.

1(b)]. This is the physical reason why the effective delayT̃
(which tends to slow the front down) will be lower for Fig.

1(a), so thatT̃ decreases with increasing values of the dis-
persion«, as predicted by Eq.(22).

It is easily seen(e.g., by considering the simple case of
two possible delaysT1 and T2) that it is possible that«.1

and, therefore,T̃,0. In such an instance, Eq.(20) breaks
down, as we will now show. In the derivation above of Eq.
(16), we have Taylor-expanded the function[which appears
in Eq. (14)]
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f ;
1

o
i=1

N

pie
−sTi

= 1 + kTls+ 1
2kTlT̃s2 + OsTi

3d.

We note that ]f /]s.0, and that for T̃,0 we have

]2f /]s2,0. Thus, if T̃,0 the second-order approximation

used in Eq. (16), namely f .1+kTls+ 1
2kTlT̃s2, becomes

negative for some values ofs, so that in this approximation
we have that the functionŵssd=oi=1

N pie
−sTi ,0 for some val-

ues ofs. But then Eq.(6) implies that the waiting-time prob-
ability distribution functionwsTd,0 for some values ofT.
Negative probabilities have no physical sense, thus we con-

clude that forT̃,0 the second-order expansion that leads to
Eq. (20) cannot be applied. Of course, if in some specific

application one computes the value ofT̃ using Eq.(18) and

finds thatT̃,0, this does not mean that population fronts do
not exist. One should then keep terms of order higher than
the second in the Taylor expansions, so that Eq.(20) will be
replaced by a more complicated equation with terms, e.g., of
the form]3r /]t3. In the application we are interested in solv-

ing (Sec. III), this is not the case, i.e., we will find thatT̃.0.

Therefore, in the present paper we will not analyze the case

T̃,0 in more detail. However, let us mention that we do not
expect that analytical solutions are possible when additional
terms in the Taylor series are kept, as already happens for the
simpler, special case of a single delay even under some dis-
persal kernel assumptions that simplify the calculations[2].

Before leaving this section, we would like to stress the
differences from previous work.

In Ref. [4], a single rest time between two successive
jumps [wsTd=dsT−T1d [11]] and a Gaussian distribution of
jump lengths in one dimension[fsDxd~expf−Dx2/a2g] were
assumed. In contrast, in the derivation above,(i) there are
several possible, discrete values of the rest time[Eq. (12)];
(ii ) the distribution of jump lengths is arbitrary; and(iii )
space has two dimensions(as required for the application in
the next section).

In Refs.[6,16], the distribution of rest times applied is not
given by Eq.(12) but by a gamma distribution(as explained
in the Introduction, a gamma distribution is very useful for
many cases, but not in the application that we analyze in the
next section). Some other examples have also been consid-
ered in Ref.[17] (including non-Markovian random walks
leading to anomalous diffusion). But instead of the very in-
teresting, abstract, and general models in Refs.[6,17], for
our purposes here it will be much simpler and clearer to
make use of the direct approach we have presented. It makes
the present paper self-contained and fits perfectly with the
kind of data available for the problem we want to solve in
the next section.

III. APPLICATION TO THE NEOLITHIC TRANSITION
IN EUROPE

Reference[1] dealt with the range expansion of agricul-
turalists across Eurasia, which took place 10 000 to 4000
years Before Present. In that model, a single rest timeT
=25 yr was assumed and the evolution equation was

T

2

]2r

] t2
+

] r

] t
= DS ]2r

] x2 +
]2r

] y2D + FPsx,y,td +
T

2

] FPsx,y,td
] t

,

s24d

with FP given by Eq.(21). The wavefront solutions to this
equation have speed[18,19]

vsingle delay=
2ÎaD

1 + a
T

2

. s25d

In Ref. [1], we also used the mean observed valuesa
=0.032 yr−1 and kD2l=1544 km2, as well asD=kD2l /4T in
Eq. (25), and in this way obtainedvsingle delay=1.0 km/yr, so
that there was good agreement with the observed speed from
the archaeological record(1.0±0.2 km/yr, see Fig. 1 and the
main text in Ref.[1], as well as[20]).

In [1], summarized in the previous paragraph, we simply
assumed that the time between successive(i.e., parents’ and
their childrens’) migrations is the same for all individuals,
i.e., we made the approximation of a single rest time with a

FIG. 1. This figure is useful in understanding why the effective

delay timeT̃ of the random walk, introduced in this work, depends
not only on the meankTl but also on the dispersion« of the delay-
time distribution. Both distributions depicted have the same mean
delaykTl, but that in(a) has a greater dispersion«, implying that a
few particles(or individuals) jump (or migrate) sooner(low values
of T), which must lead to a faster front, i.e., to a lower effective

delayT̃. This explains thatT̃ decreases with increasing values of the
dispersion«, as predicted by Eq.(22).
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value equal to the so-called generation time, namelyT
.25 yr [15]. But, clearly, a single value for the rest time
cannot be a realistic description, because different children
will leave their parents at different ages. Therefore, it is quite
important to see how the results change when taking into
account a realistic rest-time distribution. In order to do so,
we resort to Ref.[21], which is the same source from which
the value ofkD2l in Refs. [1,22] was estimated[23]. From
Ref. [21], we find that the observed rest-time distribution is
T1=27 yr, p1=0.46; T2=35.5 yr, p2=0.51; T3=45.5 yr, p3

=0.02; T4=55.5 yr, p4=0.01 [24]. Then Eq.(18) yields T̃
=31.1 yr. Using, for the moment, the same mean observed
values as above, namelya=0.032 yr−1 and kD2l=1544 km2

[1], Eq. (17) yields D̃=386 km2/gen=12.06 km2/yr and the
wavefront speed of Eq.(20) is [18,19]

vmultidelay=
2ÎaD̃

1 + a
T̃

2

= 0.83 km/yr, s26d

which implies that the correction relative to the single-delay
result in Ref. [1] is of 17%, so that the effect of several
delays turns out to be one of minor importance(as far as the
order of magnitude is considered), but should not be ne-
glecteda priori. (Note that our detailed analysis of the de-
mographic data is also relevant: the valueT=25 yr used in
Ref. [1] is the so-called generation time and was obtained
from Ref.[22]. But we now realize that this is essentially the
age difference between parents and theiroldestchild, not the
mean age difference averaged overall children [24].) An
important point is that the new, more accurate result of
0.83 km/yr is still within the observed range for the wave-
front speed(1.0±0.2 km/yr, from Fig. 1 in Ref.[1]; see also
[20]). Of course, our model is also interesting in itself, be-
cause it is applicable to many other human transitions and
biological invasions, where the effect of having several de-
lays may be a relevant point, as well as to nonbiological
systems with random walks with several possible delays.

To what extent does our new result for the European
neolithic depend on the uncertainties in the values of the
parameters? In Fig. 2 we see that, for many values ofa
and kD2l / kTl in the range allowed by independent observa-
tions [1] (hatched rectangle), the predictions of the multide-
layed model are consistent with the observed speed
(1.0±0.2 km/yr[1]).

IV. CONCLUDING REMARKS

In this paper, we have presented a theoretical framework
of multidelayed random walks with reaction. It has been ap-
plied to the neolithic transition in Europe. The effect of hav-
ing several delays is, at the end, mathematically very simple:
the single-delayed front speed is given by Eq.(25), whereas
the multidelayed one is given by Eq.(26), which has the
same mathematical form but with(i) the single rest time
between successive jumpsT replaced by an effective rest

time T̃, which must be computed by means of our new Eq.
(18), first derived in the present paper, and(ii ) the diffusion

coefficientD̃ given by Eq.(17). In the specific application of
the neolithic transition, the effect of a single delay was ana-
lyzed in Ref.[1]. Here, we have generalized it to the realistic
case of several delays. The predicted speed is still consistent
with the observed range of 1.0±0.2 km/yr(Fig. 2), but it is
somewhat lower, essentially because a reevaluation of the

dispersal demographic data shows that the effective delayT̃
is higher than the valueT=25 yr used for the single-delay
model in Ref.[1].
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FIG. 2. Predictions for the speed of the wave
of advance of farmers in the neolithic transition
according to the model with a single delay[1]
(dashed curves) and to the more realistic model
with several discrete delays, as developed in the
present paper(full curves). The dashed curves are
therefore the same as those in Ref.[1], Fig. 3. It
is seen that for many of the possible values of the
reproductive and dispersive parameters of the
population(hatched rectangle), the predictions of
the new, more accurate model are still consistent
with the front speed from the archaeological data
(1.0±0.2 km/yr, from Fig. 1 in Ref.[1]).
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